SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A34, 143-157.

Acta Cryst. (1978). B34, 1957-1959

Anhydrous Scandium Selenate

By Jussi Valkonen
Department of Chemistry, Helsinki University of Technology, Otaniemi, SF-02150 Espoo 15, Finland

(Received 12 December 1977; accepted 26 December 1977)

Abstract

Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}\), monoclinic, $P 2_{1} / c$ (No. 14), $a=$ 8.899 (2), $b=9.212$ (2), $c=15.179$ (3) $\AA, \beta=$ 124.83 (2) ${ }^{\circ}, V=1021.52 \AA^{3}, Z=4, D_{x}=3.37 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu($ Mo $K \alpha)=119.7 \mathrm{~cm}^{-1}, R=0.038$ for 1602 reflections. The structure consists of octahedrally coordinated Sc atoms linked together by SeO_{4} tetrahedra.

Introduction. Structures of scandium selenites and selenates are being investigated in this laboratory. The scandium compounds $\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Valkonen, Niinistö, Eriksson, Larsson \& Skoglund, 1975), $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Sc}\left(\mathrm{SeO}_{4}\right)_{3}$ (Valkonen \& Niinistö, 1978) and $\mathrm{Sc}\left(\mathrm{HSeO}_{3}\right)_{3}$ (Valkonen \& Leskelä, 1978) have already been solved, and the structure of $\mathrm{Na}_{3} \mathrm{Sc}\left(\mathrm{SO}_{4}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$ has been determined elsewhere (Sizova, Voronkov \& Belov, 1975). $\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}$ was crystallized earlier by Crookes (1909) and Trousil (1938), and Bouissières, Gaume-Mahn, Henry la Blanchetais, Loriers \& Trombe (1959) have reported it to be tetragonal but give no lattice parameters. The present communication describes the structure refinement of $\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}$.
The compound was crystallized as follows: 200 mg $\mathrm{Sc}_{2} \mathrm{O}_{3}$ was dissolved in $3 \mathrm{~cm}^{3}$ selenic acid $\left(0.8 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ and $10 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$. Then 150 mg LiOH. $\mathrm{H}_{2} \mathrm{O}$ was added to increase the pH , since $\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}$ does not crystallize in very acidic solution. Well developed colourless prisms of $\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}$ were grown by keeping the solution covered with a watchglass and over a water bath for a few days. Ammonia and sodium hydroxide solutions could not be used owing to the precipitation of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Sc}\left(\mathrm{SeO}_{4}\right)_{3}$ and $\mathrm{Na}_{3} \mathrm{Sc}\left(\mathrm{SeO}_{4}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}$, respectively.

A computer-controlled Syntex $P 2_{1}$ (Fortran version) four-circle diffractometer with graphite-monochromatized Mo Kcr radiation was utilized in the determination of unit-cell parameters and the collection of intensity data. The crystal size was $0.2 \times 0.2 \times 0.1$ mm and temperature 298 K . Cell dimensions were calculated from diffractometer measurements of setting angles for 21 reflections. Intensity data were collected in

The space group $P 2_{1} / c$ (No. 14) was determined on the basis of systematic absences in the original intensity the interval $5^{\circ}<2 \theta<60^{\circ}$ using the $\theta / 2 \theta$ technique and a scan speed of $2^{\circ} \mathrm{min}^{-1}$. Of the 2144 unique reflections measured, 1602 had intensities $I>3 \sigma(I)$. data. Empirical absorption correction was from the φ scan, after which Lorentz and polarization corrections were applied.

The solution, refinement and plots were carried out with the XRAY 76 program package (Stewart, 1976) and a Univac 1108 computer. Scatering factors were taken from Cromer \& Mann (1968). The Sc and Se atomic positions were determined by direct methods from the $211 E$ values larger than $1 \cdot 2$. The positions of two Sc and three Se atoms were then refined, and the subsequent difference Fourier map gave the positions of the O atoms. After refinement with isotropic temperature factors the value of R was $5 \cdot 1 \%$, and after block-diagonal-matrix refinement with anisotropic temperature factors the final value of R was 3.8%.

Table 1. Positional parameters $\left(\times 10^{4}\right)$ for $\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}$
The standard deviations of the last significant figures are given in parentheses.

	x		y
	z		
$\mathrm{Se}(1)$	$2451(1)$	$8785(1)$	$3491(1)$
$\mathrm{Se}(2)$	$4660(1)$	$3844(1)$	$3562(1)$
$\mathrm{Se}(3)$	$9580(1)$	$7525(1)$	$4944(1)$
$\mathrm{Sc}(1)$	$3680(3)$	$5340(2)$	$1166(2)$
$\mathrm{Sc}(2)$	$8688(3)$	$327(2)$	$1159(2)$
$\mathrm{O}(1)$	$3879(10)$	$9199(9)$	$3186(6)$
$\mathrm{O}(2)$	$3386(11)$	$9107(10)$	$4752(6)$
$\mathrm{O}(3)$	$2032(11)$	$7058(8)$	$3271(7)$
$\mathrm{O}(4)$	$9405(11)$	$4765(10)$	$2223(6)$
$\mathrm{O}(5)$	$3288(11)$	$3915(10)$	$3948(7)$
$\mathrm{O}(6)$	$4679(11)$	$2207(8)$	$3151(6)$
$\mathrm{O}(7)$	$3949(12)$	$5000(9)$	$2606(6)$
$\mathrm{O}(8)$	$3253(12)$	$9264(10)$	$448(7)$
$\mathrm{O}(9)$	$9661(11)$	$6866(9)$	$3966(7)$
$\mathrm{O}(10)$	$7631(11)$	$8334(9)$	$4441(7)$
$\mathrm{O}(11)$	$8788(10)$	$1320(9)$	$4357(7)$
$\mathrm{O}(12)$	$9821(10)$	$8737(9)$	$755(6)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in ScO_{6} octahedra
Estimated standard deviations are given in parentheses.

$\mathrm{Sc}(1)-\mathrm{O}(1)$	2.086 (9)	$\mathrm{O}(2)-\mathrm{Sc}(1)-\mathrm{O}(6)$	87.2 (4)
$\mathrm{Sc}(1)-\mathrm{O}(2)$	2.072 (10)	-O(7)	174.4 (4)
$\mathrm{Sc}(1)-\mathrm{O}(6)$	$2 \cdot 106$ (8)	-O(10)	93.0 (4)
$\mathrm{Sc}(1)-\mathrm{O}(7)$	2.083 (11)	-O(11)	$91 \cdot 0$ (4)
$\mathrm{Sc}(1)-\mathrm{O}(10)$	2.097 (8)	$\mathrm{O}(6)-\mathrm{Sc}(1)-\mathrm{O}(7)$	88.5 (4)
$\mathrm{Sc}(1)-\mathrm{O}(11)$	2.069 (9)	$-\mathrm{O}(10)$	172.5 (4)
$\mathrm{O}(1)-\mathrm{Sc}(1)-\mathrm{O}(2)$	95.4 (4)	-O(11)	96.8 (3)
-O(6)	86.4 (3)	$\mathrm{O}(7)-\mathrm{Sc}(1)-\mathrm{O}(10)$	91.7 (4)
-O(7)	88.0 (4)	-O(11)	85.9 (4)
-O(10)	86.1 (3)	$\mathrm{O}(10)-\mathrm{Sc}(1)-\mathrm{O}(11)$	90.8 (13)
-O(11)	173.0 (4)		
$\mathrm{Sc}(2)-\mathrm{O}(3)$	2.082 (10)	$\mathrm{O}(4)-\mathrm{Sc}(2)-\mathrm{O}(5)$	91.2 (4)
$\mathrm{Sc}(2)-\mathrm{O}(4)$	2.096 (7)	-O(8)	176.1 (4)
$\mathrm{Sc}(2)-\mathrm{O}(5)$	$2 \cdot 117$ (10)	-O(9)	97.4 (4)
$\mathrm{Sc}(2)-\mathrm{O}(8)$	2.065 (8)	-O(12)	87.9 (4)
$\mathrm{Sc}(2)-\mathrm{O}(9)$	$2 \cdot 127$ (11)	$\mathrm{O}(5)-\mathrm{Sc}(2)-\mathrm{O}(8)$	85.6 (4)
$\mathrm{Sc}(2)-\mathrm{O}(12)$	$2 \cdot 060$ (10)	-O(9)	171.3 (3)
$\mathrm{O}(3)-\mathrm{Sc}(2)-\mathrm{O}(4)$	86.6 (4)	-O(12)	93.8 (4)
-O(5)	91.2 (4)	$\mathrm{O}(8)-\mathrm{Sc}(2)-\mathrm{O}(9)$	85.8 (4)
-O(8)	95.9 (4)	-O(12)	$90 \cdot 0$ (4)
-O(9)	85.3 (4)	$\mathrm{O}(9)-\mathrm{Sc}(2)-\mathrm{O}(12)$	88.1 (4)
-O(12)	$170 \cdot 8$ (3)		

Fig. 1. The coordination around Sc.
Discussion. Positional parameters for the nonhydrogen atoms are given in Table 1.* Sc atoms are surrounded by six O atoms belonging to six SeO_{4} groups (Fig. 1). The average $\mathrm{Sc}(1)-\mathrm{O}$ distance is 2.085 \AA, and the individual $\mathrm{Sc}(1)-\mathrm{O}$ distances vary insignificantly between 2.069 and $2.106 \AA$ (Table 2). The average $\operatorname{Sc}(2)-\mathrm{O}$ distance is $2.091 \AA$, but the individual distances vary between 2.060 and $2.127 \AA$, and the $\operatorname{Sc}(2)$ octahedron appears to be distorted. The $\mathrm{Sc}(2)-\mathrm{O}$ distances can be divided into two groups, four short and two longer distances on opposite sides of the octahedron, i.e. the octahedron is slightly tetragonally

[^0]Table 3. A comparison of $\mathrm{Sc}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{Sc}-\mathrm{O}$ angles in some scandium compounds

Compound	$\mathrm{Sc}-\mathrm{O}$ range (A)	$\mathrm{O}-\mathrm{Sc}-\mathrm{O}$ range (${ }^{\circ}$)
$\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}(1)$	2.002-2.176	$\begin{array}{r} 80.7-101.5 \\ 165.4-177.9 \end{array}$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Sc}\left(\mathrm{SeO}_{4}\right)_{3}$ (2)	2.007-2.185	$\begin{gathered} 82 \cdot 9-96.9 \\ 174.5-176 \cdot 6 \end{gathered}$
$\mathrm{Na}_{3} \mathrm{Sc}\left(\mathrm{SO}_{4}\right)_{3} .2 \mathrm{H}_{2} \mathrm{O}(3)$	2.05-2.12	82.5-96.0
$\mathrm{Sc}\left(\mathrm{HSeO}_{3}\right)_{3}(4)$	2.041-2.158	$\begin{array}{r} 82 \cdot 8-103 \cdot 5 \\ 163 \cdot 9-173 \cdot 6 \end{array}$
$\mathrm{Sc}_{2}\left(\mathrm{SeO}_{4}\right)_{3}(5)$	2.060-2.127	$\begin{gathered} 85 \cdot 3-97 \cdot 4 \\ 170 \cdot 8-176 \cdot 1 \end{gathered}$

References: (1) Valkonen et al. (1975). (2) Valkonen \& Niinistö (1978). (3) Sizova, Voronkov \& Belov (1975). (4) Valkonen \& Leskelä (1978). (5) Present work.

Table 4. Bond lengths (\AA) and angles $\left(^{\circ}\right)$ in SeO_{4} tetrahedra

Estimated standard deviations are given in parentheses.

$\mathrm{Se}(1)-\mathrm{O}(1)$	$1.626(11)$	$\mathrm{O}(1)-\mathrm{Se}(1)-\mathrm{O}(2)$	$109.6(5)$
$-\mathrm{O}(2)$	$1.620(8)$	$-\mathrm{O}(3)$	$107.3(5)$
$-\mathrm{O}(3)$	$1.625(8)$	$-\mathrm{O}(4)$	$109.6(5)$
$-\mathrm{O}(4)$	$1.635(8)$	$\mathrm{O}(2)-\mathrm{Se}(1)-\mathrm{O}(3)$	$108.9(5)$
		$-\mathrm{O}(4)$	$109.2(5)$
		$\mathrm{O}(3)-\mathrm{Se}(1)-\mathrm{O}(4)$	$112.1(4)$
$\mathrm{Se}(2)-\mathrm{O}(5)$	$1.630(12)$	$\mathrm{O}(5)-\mathrm{Se}(2)-\mathrm{O}(6)$	$110.3(5)$
$-\mathrm{O}(6)$	$1.636(8)$	$-\mathrm{O}(7)$	$107.9(5)$
$-\mathrm{O}(7)$	$1.609(9)$	$-\mathrm{O}(8)$	$110.5(5)$
$-\mathrm{O}(8)$	$1.634(8)$	$\mathrm{O}(6)-\mathrm{Se}(2)-\mathrm{O}(7)$	$110.5(5)$
		$-\mathrm{O}(8)$	$108.4(5)$
		$\mathrm{O}(7)-\mathrm{Se}(2)-\mathrm{O}(8)$	$109.2(5)$
$\mathrm{Se}(3)-\mathrm{O}(9)$	$1.644(11)$	$\mathrm{O}(9)-\mathrm{Se}(3)-\mathrm{O}(10)$	$109.3(4)$
$-\mathrm{O}(10)$	$1.622(9)$	$-\mathrm{O}(11)$	$110.5(5)$
$-\mathrm{O}(11)$	$1.615(8)$	$-\mathrm{O}(12)$	$111.5(5)$
$-\mathrm{O}(12)$	$1.616(9)$	$\mathrm{O}(10)-\mathrm{Se}(3)-\mathrm{O}(11)$	$109.0(4)$
		$-\mathrm{O}(12)$	$109.3(5)$
		$\mathrm{O}(11)-\mathrm{Se}(3)-\mathrm{O}(12)$	$107.2(4)$

Fig. 2. Contents of the unit cell. c is horizontal, b vertical.
elongated. Distances between Sc and O are normal compared with other Sc compounds (Table 3).

The O atoms of the SeO_{4} groups are each connected to different Sc atoms. Because every O is bonded to Sc ,
the variation in $\mathrm{Se}-\mathrm{O}$ distances is small and SeO_{4} groups are quite regular (Table 4). The average $\mathrm{Se}-\mathrm{O}$ distance is $1.626 \AA[\mathrm{Se}(1)-\mathrm{O} 1.627, \mathrm{Se}(2)-\mathrm{O} \quad 1.627$, $\mathrm{Se}(3)-01.624 \AA$], which is in good agreement with other selenate structures (Valkonen et al., 1975).
As shown in Fig. 2, one unit cell is made up of 8 ScO_{6} octahedra and $12 \mathrm{SeO}_{4}$ tetrahedra. These groups are linked through shared O atoms and together form a three-dimensional network.

References

Bouissiéres, G., Gaume-Mahn, F., Henry la Blanchetais, C., Loriers, J. \& Trombe, F. (1959). Nouveau Traité de Chimie Minérale. Vol. VII. Scandium, Yttrium, Eléments des Terres Rares, Actinium, Part 2, p. 935. Paris: Masson.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Crookes, W. (1909). Z. Anorg. Chem. 61, 349-378.
Sizova, R. G., Voronkov, A. A. \& Belov, N. V. (1975). Sov. Phys. Dokl. 19, 472-474.
Stewart, J. M. (1976). The XRAY system - version of 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Trousil, Z. (1938). Collect. Czech. Chem. Commun. 10, 290-304.
Valkonen, J. \& Leskelä, M. (1978). Acta Cryst. B34, 1323-1326.
Valkonen, J. \& Niinistö, L. (1978). Acta Cryst. B34, 266268.

Valkonen, J., Nitistö, L., Eriksson, B., Larsson, L. O. \& Skoglund, U. (1975). Acta Chem. Scand. Ser. A, 29, 866-872.

Neodymium Diarsenide: A Single-Crystal Structure Refinement*

By Yu Wang, R. D. Heyding, \dagger E. J. Gabe, L. D. Calvert \ddagger and J. B. Taylor
Division of Chemistry, National Research Council of Canada, Ottawa K1A 0R9, Canada

(Received 8 November 1977; accepted 9 February 1978)

Abstract

NdAs}_{2}\), monoclinic, $P 2_{1} / c, a=4.1081$ (2), $b=6.8201$ (2), $c=10.4431$ (3) $\AA, \beta=106.718$ (3) ${ }^{\circ}$, $Z=4, U=280.22 \AA^{3}$, FW $294.1, D_{x}=6.97 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu($ Mo $K \alpha)=429 \mathrm{~cm}^{-1}, F(000)=504$. The model below was refined by full-matrix least squares with allowance for anomalous dispersion and extinction to $R_{2}=0.054$ for 928 observed diffractometer data. The structure is of a new distinctive type. The Nd atoms form buckled 6^{3} nets which are stacked along the short a axis giving a continuous three-dimensional Nd network with open hexagonal channels. Adjoining pairs of hexagons outline skew prisms which are centred by almost planar As_{4} zigzag chains. These polyanions are centrosymmetric, with terminal and bridge As-As distances of 2.477 and $2.497 \AA$ respectively; the As-As-As angle is 104.3°. The overall coordination numbers are 14,16 and 12 for $\mathrm{Nd}, \mathrm{As}(1)$ and $\mathrm{As}(2)$, respectively, with average As-As, Nd-As and $\mathrm{Nd}-\mathrm{Nd}$ distances of $2.49,3.18$ and $4.09 \AA$ respectively.

Introduction. Intensity data were collected on a computer-controlled Picker diffractometer using local programs [for details not given here see Wang, Gabe, Calvert \& Taylor (1976)]. NdAs_{2} crystals were grown

[^1]on polycrystalline $\mathrm{NdAs}_{2}(0.05 \mathrm{~g})$ at $600^{\circ} \mathrm{C}$ in a tube of 7 ml volume containing iodine $(0.03 \mathrm{~g})$ and arsenic $(0.05 \mathrm{~g})$. Two fragments were studied, both protected by sealed capillaries. The larger, a lath-shaped fragment $(0.04 \times 0.06 \times 0.2 \mathrm{~mm})$ mounted along its length, was used to collect 2044 reflections with $2 \theta<65^{\circ}$ by the $\theta-$ 2θ scan technique (Mo $K \alpha$ radiation, graphite monochromator) with a scan range which was varied as (0.6 $\times 0.7 \tan \theta+0.6)^{2} ; 91 \%$ of the reflections were taken as observed ($I>2 \sigma$; where σ is the standard deviation of the net count). The lattice parameters were derived from 68 reflections with $2 \theta>60^{\circ}$ and agree well with those reported earlier (Ono, Despault, Calvert \& Taylor, 1970). Two symmetry equivalent sets ($h k \bar{l}+$ $h k l, \bar{h} \bar{k} \bar{l}+\bar{h} \bar{k} l)$ were collected, corrected for absorption (Wang, Gabe, Calvert \& Taylor, 1976), Lorentz and polarization factors and then averaged to give 932 independent observed $h k l$; the discrepancy between the two sets ($\sum \Delta I / \sum I$) was 0.022 and transmission factors ranged from 0.09 to 0.21 . The space group had been determined (Ono, Despault, Calvert \& Taylor, 1970) as $P 2_{1} / c$ and this was confirmed by precession photographs ($h 0 l$ observed for $l=2 n$ and $0 k 0$ for $k=$ $2 n$). A trial structure was obtained by direct methods and these coordinates were refined by full-matrix least squares with allowance for anomalous dispersion and isotropic extinction correction (Larson, 1970) using the laboratory PDP-8 computer and local programs; the final values for R_{1} and R_{2} are 0.049 and 0.054 with

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33275 (16 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars. Chester CH1 INZ, England.

[^1]: * NRCC No. 16657.
 \dagger Visiting scientist from Chemistry Department, Queen's University, Kingston, Ontario.
 \ddagger To whom correspondence should be addressed.

